Turbulent Flows
 Stephen B. Pope
 Cambridge University Press (2000)
 Solution to Exercise 10.12

Prepared by: Zhuyin Ren
Date: 3/26/03

In homogeneous turbulence, the k and ε equations become

$$
\begin{equation*}
\frac{d k}{d t}=\mathcal{P}-\varepsilon \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{d \varepsilon}{d t}=C_{\varepsilon 1} \frac{\mathcal{P} \varepsilon}{k}-C_{\varepsilon 2} \frac{\varepsilon^{2}}{k} . \tag{2}
\end{equation*}
$$

Consider the quatity Z defined by

$$
\begin{equation*}
Z=C_{Z} k^{p} \varepsilon^{q} . \tag{3}
\end{equation*}
$$

Differentiating Eq. 3 with respect to t , we get

$$
\begin{equation*}
\frac{d Z}{d t}=C_{Z} p k^{p-1} \varepsilon^{q} \frac{d k}{d t}+C_{Z} k^{p} q \varepsilon^{q-1} \frac{d \varepsilon}{d t} . \tag{4}
\end{equation*}
$$

Substituting Eqs. 1 and 2 into 4, we get

$$
\begin{align*}
\frac{d Z}{d t} & =C_{Z} p k^{p-1} \varepsilon^{q}(\mathcal{P}-\varepsilon)+C_{Z} k^{p} q \varepsilon^{q-1}\left(C_{\varepsilon 1} \frac{\mathcal{P} \varepsilon}{k}-C_{\varepsilon 2} \frac{\varepsilon^{2}}{k}\right) \\
& =\frac{Z p}{k}(\mathcal{P}-\varepsilon)+\frac{Z q}{\varepsilon}\left(C_{\varepsilon 1} \frac{\mathcal{P} \varepsilon}{k}-C_{\varepsilon 2} \frac{\varepsilon^{2}}{k}\right) \\
& =C_{Z 1} \frac{Z \mathcal{P}}{k}-C_{Z 2} \frac{Z \varepsilon}{k}, \tag{5}
\end{align*}
$$

where

$$
\begin{align*}
& C_{Z 1}=p+q C_{\varepsilon 1} \tag{6}\\
& C_{Z 2}=p+q C_{\varepsilon 2} . \tag{7}
\end{align*}
$$

The entries in Table 10.2 are obtained by substituting $C_{\varepsilon 1}=1.44, C_{\varepsilon 2}=1.92$ and the given values of p and q into Eqs. 6 and 7.

